Complementary Matching Pursuit Algorithms for Sparse Approximation
نویسندگان
چکیده
Sparse coding in a redundant basis is of considerable interest in many areas of signal processing. The problem generally involves solving an under-determined system of equations under a sparsity constraint. Except for the exhaustive combinatorial approach, there is no known method to find the exact solution for general dictionaries. Among the various algorithms that find approximate solutions, pursuit algorithms are the most well-known. In this paper, we introduce the concept of a complementary matching pursuit (CMP). Unlike the classical matching pursuit (MP), which selects the atoms in the signal space, the CMP selects the atoms in the coefficient space. On a conceptual level, the MP searches for ’the solution vector among sparse vectors’ whereas the CMP searches for ’the sparse vector among the solution vectors’. We assume that the observations can be expressed as pure linear sums of atoms without any additive noise. As a consequence of the complementary actions in the coefficient space, the CMP does not minimize the residual error at each iteration, however it may converge faster yielding sparser solution vectors than the MP. We show that when the dictionary is a tight frame, the CMP is equivalent to the MP. We also present the orthogonal extensions of the CMP and show that they perform the complementary actions to those of their classical matching pursuit counterparts.
منابع مشابه
A Matching Pursuit Generalized Approximate Message Passing Algorithm
This paper proposes a novel matching pursuit generalized approximate message passing (MPGAMP) algorithm which explores the support of sparse representation coefficients step by step, and estimates the mean and variance of non-zero elements at each step based on a generalized-approximate-message-passing-like scheme. In contrast to the classic message passing based algorithms and matching pursuit...
متن کاملThe Stability of Regularized Orthogonal Matching Pursuit Algorithm
This paper studies a fundamental problem that arises in sparse representation and compressed sensing community: can greedy algorithms give us a stable recovery from incomplete and contaminated observations ? Using the Regularized Orthogonal Matching Pursuit (ROMP) algorithm, a modified version of Orthogonal Matching Pursuit (OMP) [1], which was recently introduced by D.Needell and R.Vershynin [...
متن کاملGreedy type algorithms for RIP matrices. A study of two selection rules
On [24] some consequences of the Restricted Isometry Property (RIP) of matrices have been applied to develop a greedy algorithm called “ROMP” (Regularized Orthogonal Matching Pursuit) to recover sparse signals and to approximate non-sparse ones. These consequences were subsequently applied to other greedy and thresholding algorithms like “SThresh”, “CoSaMP”, “StOMP” and “SWCGP”. In this paper, ...
متن کاملFinding Sparse Representations in Multiple Response Models via Bayesian Learning
Given a large overcomplete dictionary of basis vectors, our goal is to efficiently represent L > 1 signal vectors using coefficient expansions marked by a common sparsity profile. This generalizes the standard sparse representation problem to the case where we have access to multiple responses that were putatively generated by the same small subset of features. Ideally, we would like to uncover...
متن کاملOn the Use of A Priori Information for Sparse Signal Representations
This report studies the effect of introducing a priori knowledge to recover sparse representations when overcomplete dictionaries are used. We focus mainly on Greedy algorithms and Basis Pursuit as for our algorithmic basement, while a priori is incorporated by suitably weighting the elements of the dictionary. A unique sufficient condition is provided under which Orthogonal Matching Pursuit, M...
متن کامل